Impact of CaSO4-rich soil on Miocene surface preservation and Quaternary sinuous to meandering channel forms in the hyperarid Atacama Desert
Dunai, T. J., Lopez, G. A. G. & Juez-Larre, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321–324. https://doi.org/10.1130/g21184.1 (2005).
Ritter, B. et al. Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert. Sci. Rep. 8, 13952. https://doi.org/10.1038/s41598-018-32339-9 (2018).
Jordan, T. E., Kirk-Lawlor, N. E., Blanco, P. N., Rech, J. A. & Cosentino, N. J. Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert Chile. Geol. Soc. Am. Bull. 14, 15. https://doi.org/10.1130/b30978.1 (2014).
Evenstar, L. et al. Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru. Earth-Sci. Rev. 171, 1–27 (2017).
Houston, J. Variability of precipitation in the Atacama Desert: Its causes and hydrological impact. Int. J. Climatol. 26, 2181–2198. https://doi.org/10.1002/joc.1359 (2006).
Garreaud, R. D., Molina, A. & Farias, M. Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective. Earth Planet. Sci. Lett. 292, 39–50. https://doi.org/10.1016/j.epsl.2010.01.017 (2010).
Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195. https://doi.org/10.1016/j.palaeo.2007.10.032 (2009).
Houston, J. & Hartley, A. J. The Central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama desert. Int. J. Climatol. 23, 1453–1464 (2003).
Rech, J. A. et al. Massive middle Miocene gypsic paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow. Earth Planet. Sci. Lett. 506, 184–194 (2019).
Wang, F. et al. Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: Implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation. Geochim. Cosmochim. Acta 160, 227–242. https://doi.org/10.1016/j.gca.2015.03.008 (2015).
Ericksen, G. E. Geology and Origin of the Chilean Nitrate Deposits. Report No. 1188, 37 (USGS, Washington, 1981).
Binnie, S. et al. The origins and implications of paleochannels in hyperarid, tectonically active regions: The northern Atacama Desert, Chile. Glob. Planet. Change 185, 103083. https://doi.org/10.1016/j.gloplacha.2019.103083 (2020).
Tooth, S. Process, form and change in dryland rivers: A review of recent research. Earth Sci. Rev. 51, 67–107 (2000).
Tooth, S. & Nanson, G. C. Equilibrium and nonequilibrium conditions in dryland rivers. Phys. Geogr. 21, 183–211 (2000).
Griffiths, J., Fookes, P., Goudie, A. & Stokes, M. Processes and landforms in deserts. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 25, 33–95 (2012).
Billi, P., Demissie, B., Nyssen, J., Moges, G. & Fazzini, M. Meander hydromorphology of ephemeral streams: Similarities and differences with perennial rivers. Geomorphology 319, 35–46 (2018).
Santos, M. G. et al. Meandering rivers in modern desert basins: Implications for channel planform controls and prevegetation rivers. Sediment. Geol. 385, 1–14 (2019).
Ielpi, A. Morphodynamics of meandering streams devoid of plant life: Amargosa River, Death Valley, California. GSA Bull. 131, 782–802 (2019).
Vásquez, P. & Sepúlveda, F. Cartas Iquique y Pozo Almonte – Región de Tarapacá No. 161–163 Escala 1:100.000. Carta Geológica de Chile Serie Geología Básica (2013).
Marquardt, R., Marinovic, S. & Muñoz, T. Geología de las ciudades de Iquique y Alto Hospicio, región de Tarapacá, Escala 1: 25.000. (2008).
Morgan, A. et al. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert. Icarus 229, 131–156 (2014).
Kiefer, E., Dorr, M. J., Ibbeken, H. & Gotze, H. J. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165–185 (1997).
Rech, J. A., Quade, J. & Hart, W. S. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochim. Cosmochim. Acta 67, 575–586 (2003).
Diederich, J. L. et al. A 68 ka precipitation record from the hyperarid core of the Atacama Desert in northern Chile. Glob. Planet. Change 184, 103054 (2020).
Carizzo, D., González, G. & Dunai, T. J. Constricción neógena en la Cordillera de la Costa, norte de Chile: Neotectónica y datación de superficies con 21Ne cosmogénico. Rev. Geol. Chile 35, 1–38 (2008).
Wells, S. G., McFadden, L. D., Poths, J. & Olinger, C. T. Cosmogenic 3He surface exposure dating of stone pavements. Geology 23, 613–616 (1995).
Pfeiffer, M. et al. Century scale rainfall in the absolute Atacama Desert: Landscape response and implications for past and future rainfall. Quatern. Sci. Rev. 254, 106797 (2021).
Dente, E., Lensky, N. G., Morin, E. & Enzel, Y. From straight to deeply incised meandering channels: Slope impact on sinuosity of confined streams. Earth Surf. Process. Landf. 46, 1041–1054 (2021).
Hooke, J. M. River Meandering. (2020).
Schumm, S. A. River Variability and Complexity (Cambridge University Press, 2007).
Ielpi, A., Lapôtre, M. G., Gibling, M. R. & Boyce, C. K. The impact of vegetation on meandering rivers. Nat. Rev. Earth Environ. 3, 165–178 (2022).
Ewing, S. A. et al. A threshold in soil formation at Earth’s arid-hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).
Rech, J. A., Currie, B. S., Michalski, G. & Cowan, A. M. Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34, 761–764. https://doi.org/10.1130/g22444.1 (2006).
Hartley, A. J. & May, G. Miocene gypcretes from the Calama Basin Northern Chile. Sedimentology 45, 351–364 (1998).
Watson, A. Desert gypsum crusts as plaeoenvironmental indicators: A micropetrographic study of crusts from southern Tunisia and the central Namib Desert. J. Arid Environ. 15, 19–42 (1988).
Aref, M. A. Classification and depositional environments of Quaternary pedogenic gypsum crusts (gypcrete) from east of the Fayum Depression, Egypt. Sediment. Geol. 155, 87–108 (2003).
Voigt, C., Klipsch, S., Herwartz, D., Chong, G. & Staubwasser, M. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob. Planet. Change 184, 103077 (2020).
Placzek, C., Quade, J., Rech, J. A., Patchett, P. & de Arce, C. P. Geochemistry, chronology and stratigraphy of Neogene tuffs of the Central Andean region. Quat. Geochronol. 4, 22–36 (2009).
May, S. M. et al. Origin and timing of past hillslope activity in the hyper-arid core of the Atacama Desert-The formation of fine sediment lobes along the Chuculay Fault System, Northern Chile. Glob. Planet. Change 184, 103057 (2020).
Jordan, T. et al. XIV Congreso Geologico Chileno (La Serena).
Lazarus, E. D. & Constantine, J. A. Generic theory for channel sinuosity. Proc. Natl. Acad. Sci. USA 110, 8447–8452 (2013).
Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).
Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl. Acad. Sci. USA 106, 16936–16941 (2009).
Howard, A. D. How to make a meandering river. Proc. Natl. Acad. Sci. USA 106, 17245–17246 (2009).
Fairén, A., Davies, N. S. & Squyres, S. 44th Lunar and Planetary Science Conference, Abstract.
Lapôtre, M. G., Ielpi, A., Lamb, M. P., Williams, R. M. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits. J. Geophys. Res. 124, 2757–2777 (2019).
Matsubara, Y. et al. River meandering on Earth and Mars: A comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).
McMahon, W. J. & Davies, N. S. The shortage of geological evidence for pre-vegetation meandering rivers. Fluvial Meanders Sediment. Prod. Rock Rec. 48, 119–148 (2018).
Gibling, M. R. & Rust, B. R. Ribbon sandstones in the Pennsylvanian Waddens Cove Formation, Sydney Basin, Atlantic Canada: The influence of siliceous duricrusts on channel-body geometry. Sedimentology 37, 45–66 (1990).
Kereszturi, Á. Fluvial Geomorphology of Mars: Background to Separate Biogenic and Abiogenic Effects and to Identify Climate Change Related Features. (2015).
Lapotre, M. G. A. & Ielpi, A. AGU Fall Meeting Abstracts.
Lapôtre, M. G. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).
Ielpi, A. & Lapôtre, M. G. Barren meandering streams in the modern Toiyabe Basin of Nevada, USA, and their relevance to the study of the pre-vegetation rock record. J. Sediment. Res. 89, 399–415 (2019).
Allen, J. Free meandering channels and lateral deposits. Sediment. Struct. 2, 53–100 (1982).
Zinelabedin, A., Riedesel, S., Reimann, T., Ritter, B. & Dunai, T. J. Testing the potential of using coarse-grain feldspars for post-IR IRSL dating of calcium sulphate-wedge growth in the Atacama Desert. Quat. Geochronol. 71, 101341 (2022).
Sager, C., Airo, A., Arens, F. L. & Schulze-Makuch, D. New type of sand wedge polygons in the salt cemented soils of the hyper-arid Atacama Desert. Geomorphology 373, 107481 (2021).
Williams, R. M. et al. Inverted channel variations identified on a distal portion of a bajada in the central Atacama Desert, Chile. Geomorphology 393, 107925 (2021).
Merritt, D. M. Reciprocal Relations between Riparian Vegetation Fluvial Landforms and Channel Processes (Academic Press, 2020).
Azua-Bustos, A., González-Silva, C. & Fairén, A. G. The Atacama Desert in Northern Chile as an analog model of Mars. Front. Astron. Space Sci. 8, 810426. https://doi.org/10.3389/fspas (2022).
Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).
Bibring, J.-P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).
Christensen, M. O., Hamilton, V., Edwards, C., Wray, J. & Anderson, F. S. Aqueous Mineral Deposits in an Ancient, Channeled, Equatorial Terrain. PR (2008).
Osterloo, M. et al. Chloride-bearing materials in the southern highlands of Mars. Science 319, 1651–1654 (2008).
Mustard, J. F. et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008).
Poulet, F. et al. Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623–627 (2005).
Sharp, R. P. & Malin, M. C. Surface geology from Viking landers on Mars: A second look. Geol. Soc. Am. Bull. 95, 1398–1412 (1984).
Settle, M. Formation and deposition of volcanic sulfate aerosols on Mars. J. Geophys. Res. 84, 8343–8354 (1979).
Franz, H. B., King, P. L. & Gaillard, F. Volatiles in the Martian Crust 119–183 (Elsevier, 2019).
Mangold, N. et al. Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194, 519–543 (2008).
Robertson, K. & Bish, D. Constraints on the distribution of CaSO4· nH2O phases on Mars and implications for their contribution to the hydrological cycle. Icarus 223, 407–417 (2013).
Binnie, A. et al. Accelerated late quaternary uplift revealed by 10 Be exposure dating of marine terraces, Mejillones Peninsula, northern Chile. Quat. Geochronol. 36, 12–27 (2016).
Farbod, Y. et al. Spatial variations in late Quaternary slip rates along the Doruneh Fault System (Central Iran). Tectonics 35, 386–406 (2016).
Kohl, C. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587. https://doi.org/10.1016/0016-7037(92)90401-4 (1992).
Binnie, S. A. et al. Separation of Be and Al for AMS using single-step column chromatography. Nucl. Instrum. Methods Phys. Res. Sect. B 361, 397–415 (2015).
Dewald, A. et al. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany. Nucle. Instrum. Methods Phys. Res. Sect. B 294, 18–23. https://doi.org/10.1016/j.nimb.2012.04.030 (2013).
Codilean, A. T. et al. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36, 159–162 (2008).
Ritter, B., Vogt, A. & Dunai, T. J. Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis. Geochronology 3(2), 421–431 (2021).
Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149–160. https://doi.org/10.1016/j.epsl.2013.10.052 (2014).
Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from (10)Be and (26)Al measurements. Quat. Geochronol. 3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001 (2008).