Impact of CaSO4-rich soil on Miocene surface preservation and Quaternary sinuous to meandering channel forms in the hyperarid Atacama Desert

  • Dunai, T. J., Lopez, G. A. G. & Juez-Larre, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321–324. https://doi.org/10.1130/g21184.1 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ritter, B. et al. Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert. Sci. Rep. 8, 13952. https://doi.org/10.1038/s41598-018-32339-9 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, T. E., Kirk-Lawlor, N. E., Blanco, P. N., Rech, J. A. & Cosentino, N. J. Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert Chile. Geol. Soc. Am. Bull. 14, 15. https://doi.org/10.1130/b30978.1 (2014).

    Article 

    Google Scholar
     

  • Evenstar, L. et al. Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru. Earth-Sci. Rev. 171, 1–27 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Houston, J. Variability of precipitation in the Atacama Desert: Its causes and hydrological impact. Int. J. Climatol. 26, 2181–2198. https://doi.org/10.1002/joc.1359 (2006).

    Article 

    Google Scholar
     

  • Garreaud, R. D., Molina, A. & Farias, M. Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective. Earth Planet. Sci. Lett. 292, 39–50. https://doi.org/10.1016/j.epsl.2010.01.017 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195. https://doi.org/10.1016/j.palaeo.2007.10.032 (2009).

    Article 

    Google Scholar
     

  • Houston, J. & Hartley, A. J. The Central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama desert. Int. J. Climatol. 23, 1453–1464 (2003).


    Google Scholar
     

  • Rech, J. A. et al. Massive middle Miocene gypsic paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow. Earth Planet. Sci. Lett. 506, 184–194 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: Implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation. Geochim. Cosmochim. Acta 160, 227–242. https://doi.org/10.1016/j.gca.2015.03.008 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ericksen, G. E. Geology and Origin of the Chilean Nitrate Deposits. Report No. 1188, 37 (USGS, Washington, 1981).

  • Binnie, S. et al. The origins and implications of paleochannels in hyperarid, tectonically active regions: The northern Atacama Desert, Chile. Glob. Planet. Change 185, 103083. https://doi.org/10.1016/j.gloplacha.2019.103083 (2020).

    Article 

    Google Scholar
     

  • Tooth, S. Process, form and change in dryland rivers: A review of recent research. Earth Sci. Rev. 51, 67–107 (2000).

    ADS 

    Google Scholar
     

  • Tooth, S. & Nanson, G. C. Equilibrium and nonequilibrium conditions in dryland rivers. Phys. Geogr. 21, 183–211 (2000).


    Google Scholar
     

  • Griffiths, J., Fookes, P., Goudie, A. & Stokes, M. Processes and landforms in deserts. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 25, 33–95 (2012).


    Google Scholar
     

  • Billi, P., Demissie, B., Nyssen, J., Moges, G. & Fazzini, M. Meander hydromorphology of ephemeral streams: Similarities and differences with perennial rivers. Geomorphology 319, 35–46 (2018).

    ADS 

    Google Scholar
     

  • Santos, M. G. et al. Meandering rivers in modern desert basins: Implications for channel planform controls and prevegetation rivers. Sediment. Geol. 385, 1–14 (2019).

    ADS 

    Google Scholar
     

  • Ielpi, A. Morphodynamics of meandering streams devoid of plant life: Amargosa River, Death Valley, California. GSA Bull. 131, 782–802 (2019).

    CAS 

    Google Scholar
     

  • Vásquez, P. & Sepúlveda, F. Cartas Iquique y Pozo Almonte – Región de Tarapacá No. 161–163 Escala 1:100.000. Carta Geológica de Chile Serie Geología Básica (2013).

  • Marquardt, R., Marinovic, S. & Muñoz, T. Geología de las ciudades de Iquique y Alto Hospicio, región de Tarapacá, Escala 1: 25.000. (2008).

  • Morgan, A. et al. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert. Icarus 229, 131–156 (2014).

    ADS 

    Google Scholar
     

  • Kiefer, E., Dorr, M. J., Ibbeken, H. & Gotze, H. J. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165–185 (1997).


    Google Scholar
     

  • Rech, J. A., Quade, J. & Hart, W. S. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochim. Cosmochim. Acta 67, 575–586 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Diederich, J. L. et al. A 68 ka precipitation record from the hyperarid core of the Atacama Desert in northern Chile. Glob. Planet. Change 184, 103054 (2020).


    Google Scholar
     

  • Carizzo, D., González, G. & Dunai, T. J. Constricción neógena en la Cordillera de la Costa, norte de Chile: Neotectónica y datación de superficies con 21Ne cosmogénico. Rev. Geol. Chile 35, 1–38 (2008).


    Google Scholar
     

  • Wells, S. G., McFadden, L. D., Poths, J. & Olinger, C. T. Cosmogenic 3He surface exposure dating of stone pavements. Geology 23, 613–616 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Pfeiffer, M. et al. Century scale rainfall in the absolute Atacama Desert: Landscape response and implications for past and future rainfall. Quatern. Sci. Rev. 254, 106797 (2021).


    Google Scholar
     

  • Dente, E., Lensky, N. G., Morin, E. & Enzel, Y. From straight to deeply incised meandering channels: Slope impact on sinuosity of confined streams. Earth Surf. Process. Landf. 46, 1041–1054 (2021).

    ADS 

    Google Scholar
     

  • Hooke, J. M. River Meandering. (2020).

  • Schumm, S. A. River Variability and Complexity (Cambridge University Press, 2007).


    Google Scholar
     

  • Ielpi, A., Lapôtre, M. G., Gibling, M. R. & Boyce, C. K. The impact of vegetation on meandering rivers. Nat. Rev. Earth Environ. 3, 165–178 (2022).

    ADS 

    Google Scholar
     

  • Ewing, S. A. et al. A threshold in soil formation at Earth’s arid-hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Rech, J. A., Currie, B. S., Michalski, G. & Cowan, A. M. Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34, 761–764. https://doi.org/10.1130/g22444.1 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hartley, A. J. & May, G. Miocene gypcretes from the Calama Basin Northern Chile. Sedimentology 45, 351–364 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Watson, A. Desert gypsum crusts as plaeoenvironmental indicators: A micropetrographic study of crusts from southern Tunisia and the central Namib Desert. J. Arid Environ. 15, 19–42 (1988).

    ADS 

    Google Scholar
     

  • Aref, M. A. Classification and depositional environments of Quaternary pedogenic gypsum crusts (gypcrete) from east of the Fayum Depression, Egypt. Sediment. Geol. 155, 87–108 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Voigt, C., Klipsch, S., Herwartz, D., Chong, G. & Staubwasser, M. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob. Planet. Change 184, 103077 (2020).


    Google Scholar
     

  • Placzek, C., Quade, J., Rech, J. A., Patchett, P. & de Arce, C. P. Geochemistry, chronology and stratigraphy of Neogene tuffs of the Central Andean region. Quat. Geochronol. 4, 22–36 (2009).


    Google Scholar
     

  • May, S. M. et al. Origin and timing of past hillslope activity in the hyper-arid core of the Atacama Desert-The formation of fine sediment lobes along the Chuculay Fault System, Northern Chile. Glob. Planet. Change 184, 103057 (2020).


    Google Scholar
     

  • Jordan, T. et al. XIV Congreso Geologico Chileno (La Serena).

  • Lazarus, E. D. & Constantine, J. A. Generic theory for channel sinuosity. Proc. Natl. Acad. Sci. USA 110, 8447–8452 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    ADS 

    Google Scholar
     

  • Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl. Acad. Sci. USA 106, 16936–16941 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, A. D. How to make a meandering river. Proc. Natl. Acad. Sci. USA 106, 17245–17246 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fairén, A., Davies, N. S. & Squyres, S. 44th Lunar and Planetary Science Conference, Abstract.

  • Lapôtre, M. G., Ielpi, A., Lamb, M. P., Williams, R. M. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits. J. Geophys. Res. 124, 2757–2777 (2019).


    Google Scholar
     

  • Matsubara, Y. et al. River meandering on Earth and Mars: A comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).

    ADS 

    Google Scholar
     

  • McMahon, W. J. & Davies, N. S. The shortage of geological evidence for pre-vegetation meandering rivers. Fluvial Meanders Sediment. Prod. Rock Rec. 48, 119–148 (2018).


    Google Scholar
     

  • Gibling, M. R. & Rust, B. R. Ribbon sandstones in the Pennsylvanian Waddens Cove Formation, Sydney Basin, Atlantic Canada: The influence of siliceous duricrusts on channel-body geometry. Sedimentology 37, 45–66 (1990).

    ADS 

    Google Scholar
     

  • Kereszturi, Á. Fluvial Geomorphology of Mars: Background to Separate Biogenic and Abiogenic Effects and to Identify Climate Change Related Features. (2015).

  • Lapotre, M. G. A. & Ielpi, A. AGU Fall Meeting Abstracts.

  • Lapôtre, M. G. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).

    ADS 

    Google Scholar
     

  • Ielpi, A. & Lapôtre, M. G. Barren meandering streams in the modern Toiyabe Basin of Nevada, USA, and their relevance to the study of the pre-vegetation rock record. J. Sediment. Res. 89, 399–415 (2019).


    Google Scholar
     

  • Allen, J. Free meandering channels and lateral deposits. Sediment. Struct. 2, 53–100 (1982).


    Google Scholar
     

  • Zinelabedin, A., Riedesel, S., Reimann, T., Ritter, B. & Dunai, T. J. Testing the potential of using coarse-grain feldspars for post-IR IRSL dating of calcium sulphate-wedge growth in the Atacama Desert. Quat. Geochronol. 71, 101341 (2022).


    Google Scholar
     

  • Sager, C., Airo, A., Arens, F. L. & Schulze-Makuch, D. New type of sand wedge polygons in the salt cemented soils of the hyper-arid Atacama Desert. Geomorphology 373, 107481 (2021).


    Google Scholar
     

  • Williams, R. M. et al. Inverted channel variations identified on a distal portion of a bajada in the central Atacama Desert, Chile. Geomorphology 393, 107925 (2021).

    PubMed 

    Google Scholar
     

  • Merritt, D. M. Reciprocal Relations between Riparian Vegetation Fluvial Landforms and Channel Processes (Academic Press, 2020).


    Google Scholar
     

  • Azua-Bustos, A., González-Silva, C. & Fairén, A. G. The Atacama Desert in Northern Chile as an analog model of Mars. Front. Astron. Space Sci. 8, 810426. https://doi.org/10.3389/fspas (2022).

    Article 

    Google Scholar
     

  • Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Bibring, J.-P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, M. O., Hamilton, V., Edwards, C., Wray, J. & Anderson, F. S. Aqueous Mineral Deposits in an Ancient, Channeled, Equatorial Terrain. PR (2008).

  • Osterloo, M. et al. Chloride-bearing materials in the southern highlands of Mars. Science 319, 1651–1654 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mustard, J. F. et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulet, F. et al. Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623–627 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharp, R. P. & Malin, M. C. Surface geology from Viking landers on Mars: A second look. Geol. Soc. Am. Bull. 95, 1398–1412 (1984).

    ADS 

    Google Scholar
     

  • Settle, M. Formation and deposition of volcanic sulfate aerosols on Mars. J. Geophys. Res. 84, 8343–8354 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • Franz, H. B., King, P. L. & Gaillard, F. Volatiles in the Martian Crust 119–183 (Elsevier, 2019).


    Google Scholar
     

  • Mangold, N. et al. Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194, 519–543 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Robertson, K. & Bish, D. Constraints on the distribution of CaSO4· nH2O phases on Mars and implications for their contribution to the hydrological cycle. Icarus 223, 407–417 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Binnie, A. et al. Accelerated late quaternary uplift revealed by 10 Be exposure dating of marine terraces, Mejillones Peninsula, northern Chile. Quat. Geochronol. 36, 12–27 (2016).


    Google Scholar
     

  • Farbod, Y. et al. Spatial variations in late Quaternary slip rates along the Doruneh Fault System (Central Iran). Tectonics 35, 386–406 (2016).

    ADS 

    Google Scholar
     

  • Kohl, C. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587. https://doi.org/10.1016/0016-7037(92)90401-4 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Binnie, S. A. et al. Separation of Be and Al for AMS using single-step column chromatography. Nucl. Instrum. Methods Phys. Res. Sect. B 361, 397–415 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Dewald, A. et al. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany. Nucle. Instrum. Methods Phys. Res. Sect. B 294, 18–23. https://doi.org/10.1016/j.nimb.2012.04.030 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Codilean, A. T. et al. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36, 159–162 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Ritter, B., Vogt, A. & Dunai, T. J. Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis. Geochronology 3(2), 421–431 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149–160. https://doi.org/10.1016/j.epsl.2013.10.052 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from (10)Be and (26)Al measurements. Quat. Geochronol. 3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001 (2008).

    Article 

    Google Scholar