Social media and deep learning capture the aesthetic quality of the landscape
Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 109, 8812–8819. https://doi.org/10.1073/pnas.1114773109 (2012).
Gobster, P. H., Nassauer, J. I., Daniel, T. C. & Fry, G. The shared landscape: What does aesthetics have to do with ecology?. Landsc. Ecol. 22, 959–972. https://doi.org/10.1007/s10980-007-9110-x (2007).
Abraham, A., Sommerhalder, K. & Abel, T. Landscape and well-being: A scoping study on the health-promoting impact of outdoor environments. Int. J. Public Health 55, 59–69. https://doi.org/10.1007/s00038-009-0069-z (2010).
Rice, W. L. et al. Changes in recreational behaviors of outdoor enthusiasts during the COVID-19 pandemic: Analysis across urban and rural communities. J. Urban Ecol. https://doi.org/10.1093/jue/juaa020 (2020).
Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 104075. https://doi.org/10.1088/1748-9326/abb396 (2020).
Maes, J. et al. Mainstreaming ecosystem services into EU policy. Curr. Opin. Environ. Sustain. 5, 128–134. https://doi.org/10.1016/j.cosust.2013.01.002 (2013).
Paracchini, M. L. et al. Mapping cultural ecosystem services: A framework to assess the potential for outdoor recreation across the EU. Ecol. Indic. 45, 371–385. https://doi.org/10.1016/j.ecolind.2014.04.018 (2014).
Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515. https://doi.org/10.1126/science.aaz8901 (2020).
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272. https://doi.org/10.1126/science.aap8826 (2018).
Martínez-Harms, M. J. & Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodiv. Sci. Ecosyst. Serv. Manag. 8, 17–25. https://doi.org/10.1080/21513732.2012.663792 (2012).
Raymond, C. M., Kenter, J. O., Plieninger, T., Turner, N. J. & Alexander, K. A. Comparing instrumental and deliberative paradigms underpinning the assessment of social values for cultural ecosystem services. Ecol. Econ. 107, 145–156. https://doi.org/10.1016/j.ecolecon.2014.07.033 (2014).
Bateman, I. J. et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 341, 45–50. https://doi.org/10.1126/science.1234379 (2013).
Hernández-Morcillo, M., Plieninger, T. & Bieling, C. An empirical review of cultural ecosystem service indicators. Ecol. Indic. 29, 434–444. https://doi.org/10.1016/j.ecolind.2013.01.013 (2013).
Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307. https://doi.org/10.1016/j.ecoser.2018.02.015 (2018).
Uuemaa, E., Antrop, M., Roosaare, J., Marja, R. & Mander, U. Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res. 3, 1–28. https://doi.org/10.12942/lrlr-2009-1 (2009).
Schirpke, U., Tasser, E. & Tappeiner, U. Predicting scenic beauty of mountain regions. Landsc. Urban Plan. 111, 1–12. https://doi.org/10.1016/j.landurbplan.2012.11.010 (2013).
Tveit, M., Ode, Å. & Fry, G. Key concepts in a framework for analysing visual landscape character. Landsc. Res. 31, 229–255. https://doi.org/10.1080/01426390600783269 (2006).
Ode, Å., Tveit, M. & Fry, G. Capturing landscape visual character using indicators: Touching base with landscape aesthetic theory. Landsc. Res. 33, 89–117. https://doi.org/10.1080/01426390701773854 (2008).
de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272. https://doi.org/10.1016/j.ecocom.2009.10.006 (2010).
Schröter, M., Remme, R. P., Sumarga, E., Barton, D. N. & Hein, L. Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting. Ecosyst. Serv. 13, 64–69. https://doi.org/10.1016/j.ecoser.2014.07.003 (2015).
Tenerelli, P., Püffel, C. & Luque, S. Spatial assessment of aesthetic services in a complex mountain region: Combining visual landscape properties with crowdsourced geographic information. Landsc. Ecol. 32, 1097–1115. https://doi.org/10.1007/s10980-017-0498-7 (2017).
Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 1–7. https://doi.org/10.1038/srep02976 (2013).
van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl. Acad. Sci. USA 113, 12974–12979. https://doi.org/10.1073/pnas.1614158113 (2016).
Tenerelli, P., Demšar, U. & Luque, S. Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecol. Indic. 64, 237–248. https://doi.org/10.1016/j.ecolind.2015.12.042 (2016).
Richards, D. R. & Tunçer, B. Using image recognition to automate assessment of cultural ecosystem services from social media photographs. Ecosyst. Serv. 31, 318–325. https://doi.org/10.1016/j.ecoser.2017.09.004 (2018).
Sinclair, M., Mayer, M., Woltering, M. & Ghermandi, A. Valuing nature-based recreation using a crowdsourced travel cost method: A comparison to onsite survey data and value transfer. Ecosyst. Serv. 45, 101165. https://doi.org/10.1016/j.ecoser.2020.101165 (2020).
Antoniou, V. et al. Investigating the feasibility of geo-tagged photographs as sources of land cover input data. ISPRS Int. J. Geo-Inf.https://doi.org/10.3390/ijgi5050064 (2016).
Mancini, F., Coghill, G. M. & Lusseau, D. Quantifying wildlife watchers’ preferences to investigate the overlap between recreational and conservation value of natural areas. J. Appl. Ecol. 56, 387–397. https://doi.org/10.1111/1365-2664.13274 (2019).
Hollenstein, L. & Purves, R. Exploring place through user-generated content: Using Flickr tags to describe city cores. J. Spatial Inf. Sci. 1, 21–48. https://doi.org/10.5311/JOSIS.2010.1.3 (2010).
Donahue, M. L. et al. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urban Plan. 175, 1–10. https://doi.org/10.1016/j.landurbplan.2018.02.006 (2018).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539 (2015).
Naik, N., Kominers, S. D., Raskar, R., Glaeser, E. L. & Hidalgo, C. A. Computer vision uncovers predictors of physical urban change. Proc. Natl. Acad. Sci. USA 114, 7571–7576. https://doi.org/10.1073/pnas.1619003114 (2017).
Toivonen, T. et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298–315. https://doi.org/10.1016/j.biocon.2019.01.023 (2019).
Zhang, F., Zhou, B., Ratti, C. & Liu, Y. Discovering place-informative scenes and objects using social media photos. R. Soc. Open Sci. 6, 181375. https://doi.org/10.1098/rsos.181375 (2019).
Srivastava, S., Vargas Muñoz, J. E., Lobry, S. & Tuia, D. Fine-grained landuse characterization using ground-based pictures: A deep learning solution based on globally available data. Int. J. Geogr. Inf. Sci. 34, 1117–1136. https://doi.org/10.1080/13658816.2018.1542698 (2020).
Egarter Vigl, L. et al. Harnessing artificial intelligence technology and social media data to support cultural ecosystem service assessments. People Nat. 3, 673–685. https://doi.org/10.1002/pan3.10199 (2021).
ScenicOrNot. ScenicOrNot Dataset (2015). http://scenicornot.datasciencelab.co.uk.
Seresinhe, C. I., Moat, H. S. & Preis, T. Quantifying scenic areas using crowdsourced data. Environ. Plan. B Urban Anal. City Sci. 45, 567–582. https://doi.org/10.1177/0265813516687302 (2017).
Chesnokova, O., Nowak, M. & Purves, R. S. A crowdsourced model of landscape preference. In 13th International Conference on Spatial Information Theory (COSIT 2017), vol. 86. https://doi.org/10.4230/LIPIcs.COSIT.2017.19 (2017).
Seresinhe, C. I., Tobias, P. & Moat, H. S. Using deep learning to quantify the beauty of outdoor places. R. Soc. Open Sci.. https://doi.org/10.1098/rsos.170170 (2017).
Workman, S., Souvenir, R. & Jacobs, N. Understanding and mapping natural beauty. In 2017 IEEE International Conference on Computer Vision (ICCV), vol. 4, 5590–5599. https://doi.org/10.1109/ICCV.2017.596 (2017).
Marcos, D. et al. Contextual semantic interpretability. In Proceedings of the Asian Conference on Computer Vision (2020).
Arendsen, P., Marcos, D. & Tuia, D. Concept discovery for the interpretation of landscape scenicness. Mach. Learn. Knowl. Extract.https://doi.org/10.3390/make2040022 (2020).
Levering, A., Marcos, D. & Tuia, D. On the relation between landscape beauty and land cover: A case study in the U.K. at Sentinel-2 resolution with interpretable AI. ISPRS J. Photogram. Remote Sens. 177, 194–203. https://doi.org/10.1016/j.isprsjprs.2021.04.020 (2021).
Havinga, I., Bogaart, P. W., Hein, L. & Tuia, D. Defining and spatially modelling cultural ecosystem services using crowdsourced data. Ecosyst. Serv. 43, 101091. https://doi.org/10.1016/j.ecoser.2020.101091 (2020).
Oteros-Rozas, E., Martín-López, B., Fagerholm, N., Bieling, C. & Plieninger, T. Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol. Indic. 94, 74–86. https://doi.org/10.1016/j.ecolind.2017.02.009 (2018).
Englund, O., Berndes, G. & Cederberg, C. How to analyse ecosystem services in landscapes—A systematic review. Ecol. Indic. 73, 492–504. https://doi.org/10.1016/j.ecolind.2016.10.009 (2017).
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A. & Torralba, A. Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452–1464. https://doi.org/10.1109/TPAMI.2017.2723009 (2017).
Patterson, G., Xu, C., Su, H. & Hays, J. The SUN attribute database: Beyond categories for deeper scene understanding. Int. J. Comput. Vis. 108, 59–81. https://doi.org/10.1007/s11263-013-0695-z (2014).
Lee, H., Seo, B., Koellner, T. & Lautenbach, S. Mapping cultural ecosystem services 2.0—Potential and shortcomings from unlabeled crowd sourced images. Ecol. Indic. 96, 505–515. https://doi.org/10.1016/j.ecolind.2018.08.035 (2019).
Ulrich, R. S. Visual landscapes and psychological well-being. Landsc. Res. 4, 17–23. https://doi.org/10.1080/01426397908705892 (1979).
Cordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. T. & Bullock, J. M. Habitat fragmentation intensifies trade-offs between biodiversity and ecosystem services in a heathland ecosystem in Southern England. PLOS ONE 10, e0130004. https://doi.org/10.1371/journal.pone.0130004 (2015).
Newton, A. C. et al. Impacts of grazing on lowland heathland in north-west Europe. Biol. Conserv. 142, 935–947. https://doi.org/10.1016/j.biocon.2008.10.018 (2009).
Tveit, M. S. Indicators of visual scale as predictors of landscape preference; A comparison between groups. J. Environ. Manag. 90, 2882–2888. https://doi.org/10.1016/j.jenvman.2007.12.021 (2009).
Frank, S., Fürst, C., Koschke, L., Witt, A. & Makeschin, F. Assessment of landscape aesthetics—validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. Ecol. Indic. 32, 222–231. https://doi.org/10.1016/j.ecolind.2013.03.026 (2013).
Graham, L. J. & Eigenbrod, F. Scale dependency in drivers of outdoor recreation in England. People Nat. 1, 406–416. https://doi.org/10.1002/pan3.10042 (2019).
Ryo, M. & Rillig, M. C. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 8, e01976. https://doi.org/10.1002/ecs2.1976 (2017).
Karasov, O., Vieira, A. A. B., Külvik, M. & Chervanyov, I. Landscape coherence revisited: GIS-based mapping in relation to scenic values and preferences estimated with geolocated social media data. Ecol. Indic. 111, 105973. https://doi.org/10.1016/j.ecolind.2019.105973 (2020).
Foltête, J.-C., Ingensand, J. & Blanc, N. Coupling crowd-sourced imagery and visibility modelling to identify landscape preferences at the panorama level. Landsc. Urban Plan. 197, 103756. https://doi.org/10.1016/j.landurbplan.2020.103756 (2020).
Labib, S. M., Huck, J. J. & Lindley, S. Modelling and mapping eye-level greenness visibility exposure using multi-source data at high spatial resolutions. Sci. Total Environ. 755, 143050. https://doi.org/10.1016/j.scitotenv.2020.143050 (2021).
Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399. https://doi.org/10.1023/B:LAND.0000030441.15628.d6 (2004).
Weather, U. K. UK seasonal weather summary—Winter 2009/2010. Weather 65, 99. https://doi.org/10.1002/wea.601 (2010).
Lenormand, M. et al. Multiscale socio-ecological networks in the age of information. PLOS ONE 13, e0206672. https://doi.org/10.1371/journal.pone.0206672 (2018).
Li, L., Goodchild, M. F. & Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 40, 61–77. https://doi.org/10.1080/15230406.2013.777139 (2013).
Uuemaa, E., Mander, Ü. & Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 28, 100–106. https://doi.org/10.1016/j.ecolind.2012.07.018 (2013).
Daniel, T. C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 54, 267–281. https://doi.org/10.1016/S0169-2046(01)00141-4 (2001).