Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining
NRDC. Artisanal Gold: Opportunities for responsible investment-Summary. Investing in Artisanal Gold Summary v8 https://www.nrdc.org/sites/default/files/investing-artisanal-gold-summary.pdf (2016).
Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 9 (2017).
Espejo, J. C. et al. Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens. 10, 1–17 (2018).
Gerson, J. R. et al. Artificial lake expansion amplifies mercury pollution from gold mining. Sci. Adv. 6, eabd4953 (2020).
Dethier, E. N., Sartain, S. L. & Lutz, D. A. Heightened levels and seasonal inversion of riverine suspended sediment in a tropical biodiversity hot spot due to artisanal gold mining. Proc. Natl Acad. Sci. USA 116, 23936–23941 (2019).
Abe, C. A. et al. Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Reg. Environ. Chang. 19, 1801–1813 (2019).
UNEP. Global Mercury Assessment https://www.unep.org/resources/publication/global-mercury-assessment-2018 (2018).
Markham, K. E. & Sangermano, F. Evaluating wildlife vulnerability to mercury pollution from artisanal and small-scale gold mining in Madre de Dios, Peru. Trop. Conserv. Sci. 11, 194008291879432 (2018).
Alvarez-Berríos, N. et al. Impacts of small-scale gold mining on birds and anurans near the Tambopata Natural Reserve, Peru, assessed using passive acoustic monitoring. Trop. Conserv. Sci. 9, 832–851 (2016).
Ashe, K. Elevated mercury concentrations in humans of Madre de Dios, Peru. PLoS One 7, 1–6 (2012).
Langeland, A., Hardin, R. & Neitzel, R. Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health 14, 302 (2017).
Gonzalez, D. J. X., Arain, A. & Fernandez, L. E. Mercury exposure, risk factors, and perceptions among women of childbearing age in an artisanal gold mining region of the Peruvian Amazon. Environ. Res. 179, 108786 (2019).
Gutleb, A. C., Schenck, C. & Stalb, E. Giant otter (Pteronura brasiliensis) at risk? Total mercury and methylmercury levels in fish and otter scats, Peru. Ambio 26, 511–514 (1997).
Júnior, J. A. M. A. Y., Quigley, H. & Hoogesteijn, R. Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold mining impact in the Brazilian Pantanal. An. Acad. Bras. Cienc. 90, 1–11 (2017).
Stylo, M., De Haan, J. & Davis, K. Collecting, managing and translating data into National Action Plans for artisanal and small scale gold mining. Extr. Ind. Soc. 7, 237–248 (2020).
Hilson, G., Hu, Y. & Kumah, C. Locating female ‘Voices’ in the Minamata Convention on Mercury in Sub-Saharan Africa: The case of Ghana. Environ. Sci. Policy 107, 123–136 (2020).
Clifford, M. J. Future strategies for tackling mercury pollution in the artisanal gold mining sector: Making the Minamata Convention work. Futures 62, 106–112 (2014).
Spiegel, S., Keane, S., Metcalf, S. & Veiga, M. Implications of the minamata convention on mercury for informal gold mining in sub-Saharan Africa: From global policy debates to grassroots implementation? Environ. Dev. Sustain 17, 765–785 (2015).
Lodenius, M. & Malm, O. Mercury in the Amazon. Rev. Environ. Contam. Toxicol 157, 25–52 (1998).
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).
Paige Wright, L., Zhang, L. & Marsik, F. J. Overview of mercury dry deposition, litterfall, and throughfall studies. Atmos. Chem. Phys. 16, 13399–13416 (2016).
Gerson, J. R., Driscoll, C. T., Hsu-kim, H. & Bernhardt, E. S. Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elem. Sci. Anthr. 6, 11 (2018).
Hsu-Kim, H. et al. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47, 141–169 (2018).
Witt, E. L., Kolka, R. K., Nater, E. A. & Wickman, T. R. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest. Water. Air. Soil Pollut. 199, 3–11 (2009).
Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl Acad. Sci. USA 110, 18454–18459 (2013).
Sprovieri, F. et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 16, 11915–11935 (2016).
Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H. & Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 10, 8245–8265 (2010).
Guo, Y. et al. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmos. Environ. 42, 7096–7103 (2008).
Jiskra, M. et al. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nat. Geosci. 11, 244–250 (2018).
Fay, L. & Gustin, M. Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water. Air. Soil Pollut. 181, 373–384 (2007).
Ericksen, J. A. et al. Accumulation of atmospheric mercury in forest foliage. Atmos. Environ. 37, 1613–1622 (2003).
Fu, X. W. et al. Observations of atmospheric mercury in China: A critical review. Atmos. Chem. Phys. Discuss. 15, 11925–11983 (2009).
Zhou, J. et al. Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China. Atmos. Environ. 81, 364–372 (2013).
Teixeira, D. C., Lacerda, L. D. & Silva-Filho, E. V. Mercury sequestration by rainforests: The influence of microclimate and different successional stages. Chemosphere 168, 1186–1193 (2017).
Nebel, G., Dragsted, J. & Vega, A. S. Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. For. Ecol. Manage. 150, 93–102 (2001).
Shanley, J. B. & Bishop, K. H. Mercury in the Environment: Pattern and Process (ed. Bank, M.) 119–141 (University of California Press, 2012).
Gerson, J. R. et al. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production. JGR. Biogeosciences 122, 1–18 (2017).
Fadini, P. & Jardim, W. Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? Sci. Total Environ. 275, 71–82 (2001).
Hartman, J. S. et al. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States. Environ. Sci. Technol. 43, 4989–4994 (2009).
Magarelli, G. & Fostier, H. Quantificacao de fluxos de mercurio gasoso na interface solo/atmosfera utilizando camara de fluxo dinamico: Aplicacao na bacia do Rio Negro. Quim. Nova 28, 968–974 (2005).
Ullrich, S. M., Tanton, T. W. & Abdrashitova, S. A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 31, 241–293 (2001).
Hsu-Kim, H., Kucharzyk, K. H., Zhang, T. & Deshusses, M. A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol. 47, 2441–2456 (2013).
Rudd, J. W. M. Sources of methyl mercury to freshwater ecosystems: A review. Water, Air, Soil Pollut. 80, 697–713 (1995).
Roulet, M., Guimaraes, J. & Lucotte, M. Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain—effect of seasonal indundation. Water Air Soil Pollut. 128, 41–60 (2001).
Biswas, A., Blum, J. D., Klaue, B. & Keeler, G. J. Release of mercury from Rocky Mountain forest fires. Global Biogeochem. Cycles 21, 1–13 (2007).
Kumar, A., Wu, S., Huang, Y., Liao, H. & Kaplan, J. O. Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change. Atmos. Environ. 173, 6–15 (2018).
Monzon, E. V. Plan de negocios 2007-201: SIAMAZONIA (2007).
MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
Ozanne, C. H. P. et al. Biodiversity meets the atmosphere: A global view of forest canopies. Science 301, 183–186 (2003).
Vuohelainen, A. J., Coad, L., Marthews, T. R., Malhi, Y. & Killeen, T. J. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios, Peru. Environ. Manage. 50, 645–663 (2012).
Porvari, P., Verta, M., Munthe, J. & Haapanen, M. Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environ. Sci. Technol. 37, 2389–2393 (2003).
Veiga, M. M. & Meech, J. A. Mercury pollution from deforestation. Nature 368, 816–817 (1994).
Magarelli, G. & Fostier, A. H. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmos. Environ. 39, 7518–7528 (2005).
Cardo, M. A. & Vargas, P. M. Proyecto: Plan nacional de accion sobre mercurio en el sector de la mineria de oro artesanal y de pequena escala en el Peru (2017).
Veiga, M. M. & Chouinard, R. Results of the awareness campaign and technology demonstration for artisanal gold miners: Summary report (2008).
Rimmer, C. C. et al. Mercury concentrations in Bicknell’s thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology 14, 223–240 (2005).
Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J. & Faccio, S. D. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19, 697–709 (2010).
Evers, D. Encyclopedia of the Anthropocene 5 (Elsevier Inc., 2018).
Ackerman, J. T. et al. Avian mercury exposure and toxicological risk across western North America: A synthesis. Sci. Total Environ. 568, 749–769 (2016).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., de Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Obrist, D. et al. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47, 116–140 (2018).
Saiki, M. K., Martin, B. A., May, T. W. & Alpers, C. N. Mercury concentrations in fish from a Sierra Nevada foothill reservoir located downstream from historic gold-mining operations. Environ. Monit. Assess. 163, 313–326 (2010).
McLagan, D. S. et al. A high-precision passive air sampler for gaseous mercury. Environ. Sci. Technol. Lett. 3, 24–29 (2016).
Stupple, G. W., McLagan, D. S. & Steffan, A. In situ reactive gaseous mercury uptake on radiello diffusive barrier, cation exchange membrane, and teflon filter membranes during atmospheric mercury depletion events. In 14th International Conference on Mercury as a Global Pollutant (2019).
Schulenberg, T. S. et al. Birds of Peru (Princeton University Press, 2010).
Almeida, D. R. A. et al. Monitoring the structure of forest restoration plantations with a drone-lidar system. Int. J. Appl. Earth Obs. Geoinf. 79, 192–198 (2019).
Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J. & Xie, Z. Natural mercury isotope variation in coal deposits and organic soils. Environ. Sci. Technol. 42, 8303–8309 (2008).
McLagan, D. S. et al. Global evaluation and calibration of a passive air sampler for gaseous mercury. Atmos. Chem. Phys. 18, 5905–5919 (2018).
Munson, K. M., Babi, D. & Lamborg, C. H. Determination of monomethylmercury from seawater with ascorbic acid-assisted direct ethylation. Limnol. Oceanogr. Methods 12, 1–9 (2014).
Hintelmann, H. & Nguyen, H. T. Extraction of methylmercury from tissue and plant samples by acid leaching. Anal. Bioanal. Chem. 381, 360–365 (2005).
Tseng, C. M. et al. Rapid and quantitative microwaveassisted recovery of methylmercury from standard reference sediments. J. Anal. At. Spectrom. 12, 629–635 (1997).
Rahman, M. & Kingston, H. Development of a microwave-assisted extraction method and isotopic validation of mercury species in soils and sediments. J. Anal. At. Spectrom. 20, 183–191 (2005).
Hintelmann, H. & Evans, R. D. Application of stable isotopes in environmental tracer studies—measurement of monomethylmercury (CH3Hg+) by isotope dilution ICP-MS and detection of species transformation. Fresenius J. Anal. Chem. 358, 378–385 (1997).
Fostier, A. H. et al. Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapa State, Brazil). Sci. Total Environ. 260, 201–211 (2000).
Batjes, N. H. & Dijkshoorn, J. A. Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma 89, 273–286 (1999).
‘R Core Team’. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
Obrist, D. et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981 (2011).
Gerson, J. R. et al. Chemistry of surface water, precipitation, throughfall, leaves, sediment, soil, and air near artisanal gold mining in Madre de Dios, Peru. Ecology Data Papers (2022). In Press.