Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining

  • 1.

    NRDC. Artisanal Gold: Opportunities for responsible investment-Summary. Investing in Artisanal Gold Summary v8 https://www.nrdc.org/sites/default/files/investing-artisanal-gold-summary.pdf (2016).

  • 2.

    Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 9 (2017).

  • 3.

    Espejo, J. C. et al. Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens. 10, 1–17 (2018).


    Google Scholar
     

  • 4.

    Gerson, J. R. et al. Artificial lake expansion amplifies mercury pollution from gold mining. Sci. Adv. 6, eabd4953 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Dethier, E. N., Sartain, S. L. & Lutz, D. A. Heightened levels and seasonal inversion of riverine suspended sediment in a tropical biodiversity hot spot due to artisanal gold mining. Proc. Natl Acad. Sci. USA 116, 23936–23941 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Abe, C. A. et al. Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Reg. Environ. Chang. 19, 1801–1813 (2019).

  • 7.

    UNEP. Global Mercury Assessment https://www.unep.org/resources/publication/global-mercury-assessment-2018 (2018).

  • 8.

    Markham, K. E. & Sangermano, F. Evaluating wildlife vulnerability to mercury pollution from artisanal and small-scale gold mining in Madre de Dios, Peru. Trop. Conserv. Sci. 11, 194008291879432 (2018).

  • 9.

    Alvarez-Berríos, N. et al. Impacts of small-scale gold mining on birds and anurans near the Tambopata Natural Reserve, Peru, assessed using passive acoustic monitoring. Trop. Conserv. Sci. 9, 832–851 (2016).


    Google Scholar
     

  • 10.

    Ashe, K. Elevated mercury concentrations in humans of Madre de Dios, Peru. PLoS One 7, 1–6 (2012).


    Google Scholar
     

  • 11.

    Langeland, A., Hardin, R. & Neitzel, R. Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health 14, 302 (2017).

    PubMed Central 

    Google Scholar
     

  • 12.

    Gonzalez, D. J. X., Arain, A. & Fernandez, L. E. Mercury exposure, risk factors, and perceptions among women of childbearing age in an artisanal gold mining region of the Peruvian Amazon. Environ. Res. 179, 108786 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Gutleb, A. C., Schenck, C. & Stalb, E. Giant otter (Pteronura brasiliensis) at risk? Total mercury and methylmercury levels in fish and otter scats, Peru. Ambio 26, 511–514 (1997).


    Google Scholar
     

  • 14.

    Júnior, J. A. M. A. Y., Quigley, H. & Hoogesteijn, R. Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold mining impact in the Brazilian Pantanal. An. Acad. Bras. Cienc. 90, 1–11 (2017).

  • 15.

    Stylo, M., De Haan, J. & Davis, K. Collecting, managing and translating data into National Action Plans for artisanal and small scale gold mining. Extr. Ind. Soc. 7, 237–248 (2020).


    Google Scholar
     

  • 16.

    Hilson, G., Hu, Y. & Kumah, C. Locating female ‘Voices’ in the Minamata Convention on Mercury in Sub-Saharan Africa: The case of Ghana. Environ. Sci. Policy 107, 123–136 (2020).


    Google Scholar
     

  • 17.

    Clifford, M. J. Future strategies for tackling mercury pollution in the artisanal gold mining sector: Making the Minamata Convention work. Futures 62, 106–112 (2014).


    Google Scholar
     

  • 18.

    Spiegel, S., Keane, S., Metcalf, S. & Veiga, M. Implications of the minamata convention on mercury for informal gold mining in sub-Saharan Africa: From global policy debates to grassroots implementation? Environ. Dev. Sustain 17, 765–785 (2015).


    Google Scholar
     

  • 19.

    Lodenius, M. & Malm, O. Mercury in the Amazon. Rev. Environ. Contam. Toxicol 157, 25–52 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Paige Wright, L., Zhang, L. & Marsik, F. J. Overview of mercury dry deposition, litterfall, and throughfall studies. Atmos. Chem. Phys. 16, 13399–13416 (2016).

    ADS 

    Google Scholar
     

  • 22.

    Gerson, J. R., Driscoll, C. T., Hsu-kim, H. & Bernhardt, E. S. Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elem. Sci. Anthr. 6, 11 (2018).

  • 23.

    Hsu-Kim, H. et al. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47, 141–169 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Witt, E. L., Kolka, R. K., Nater, E. A. & Wickman, T. R. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest. Water. Air. Soil Pollut. 199, 3–11 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl Acad. Sci. USA 110, 18454–18459 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Sprovieri, F. et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 16, 11915–11935 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H. & Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 10, 8245–8265 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Guo, Y. et al. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmos. Environ. 42, 7096–7103 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Jiskra, M. et al. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nat. Geosci. 11, 244–250 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Fay, L. & Gustin, M. Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water. Air. Soil Pollut. 181, 373–384 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Ericksen, J. A. et al. Accumulation of atmospheric mercury in forest foliage. Atmos. Environ. 37, 1613–1622 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Fu, X. W. et al. Observations of atmospheric mercury in China: A critical review. Atmos. Chem. Phys. Discuss. 15, 11925–11983 (2009).

    ADS 

    Google Scholar
     

  • 33.

    Zhou, J. et al. Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China. Atmos. Environ. 81, 364–372 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Teixeira, D. C., Lacerda, L. D. & Silva-Filho, E. V. Mercury sequestration by rainforests: The influence of microclimate and different successional stages. Chemosphere 168, 1186–1193 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Nebel, G., Dragsted, J. & Vega, A. S. Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. For. Ecol. Manage. 150, 93–102 (2001).


    Google Scholar
     

  • 36.

    Shanley, J. B. & Bishop, K. H. Mercury in the Environment: Pattern and Process (ed. Bank, M.) 119–141 (University of California Press, 2012).

  • 37.

    Gerson, J. R. et al. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production. JGR. Biogeosciences 122, 1–18 (2017).


    Google Scholar
     

  • 38.

    Fadini, P. & Jardim, W. Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? Sci. Total Environ. 275, 71–82 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Hartman, J. S. et al. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States. Environ. Sci. Technol. 43, 4989–4994 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Magarelli, G. & Fostier, H. Quantificacao de fluxos de mercurio gasoso na interface solo/atmosfera utilizando camara de fluxo dinamico: Aplicacao na bacia do Rio Negro. Quim. Nova 28, 968–974 (2005).

    CAS 

    Google Scholar
     

  • 41.

    Ullrich, S. M., Tanton, T. W. & Abdrashitova, S. A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 31, 241–293 (2001).

    CAS 

    Google Scholar
     

  • 42.

    Hsu-Kim, H., Kucharzyk, K. H., Zhang, T. & Deshusses, M. A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol. 47, 2441–2456 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Rudd, J. W. M. Sources of methyl mercury to freshwater ecosystems: A review. Water, Air, Soil Pollut. 80, 697–713 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Roulet, M., Guimaraes, J. & Lucotte, M. Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain—effect of seasonal indundation. Water Air Soil Pollut. 128, 41–60 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Biswas, A., Blum, J. D., Klaue, B. & Keeler, G. J. Release of mercury from Rocky Mountain forest fires. Global Biogeochem. Cycles 21, 1–13 (2007).


    Google Scholar
     

  • 46.

    Kumar, A., Wu, S., Huang, Y., Liao, H. & Kaplan, J. O. Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change. Atmos. Environ. 173, 6–15 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Monzon, E. V. Plan de negocios 2007-201: SIAMAZONIA (2007).

  • 48.

    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).


    Google Scholar
     

  • 49.

    Ozanne, C. H. P. et al. Biodiversity meets the atmosphere: A global view of forest canopies. Science 301, 183–186 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Vuohelainen, A. J., Coad, L., Marthews, T. R., Malhi, Y. & Killeen, T. J. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios, Peru. Environ. Manage. 50, 645–663 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 51.

    Porvari, P., Verta, M., Munthe, J. & Haapanen, M. Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environ. Sci. Technol. 37, 2389–2393 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Veiga, M. M. & Meech, J. A. Mercury pollution from deforestation. Nature 368, 816–817 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Magarelli, G. & Fostier, A. H. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmos. Environ. 39, 7518–7528 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Cardo, M. A. & Vargas, P. M. Proyecto: Plan nacional de accion sobre mercurio en el sector de la mineria de oro artesanal y de pequena escala en el Peru (2017).

  • 55.

    Veiga, M. M. & Chouinard, R. Results of the awareness campaign and technology demonstration for artisanal gold miners: Summary report (2008).

  • 56.

    Rimmer, C. C. et al. Mercury concentrations in Bicknell’s thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology 14, 223–240 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J. & Faccio, S. D. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19, 697–709 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Evers, D. Encyclopedia of the Anthropocene 5 (Elsevier Inc., 2018).

  • 59.

    Ackerman, J. T. et al. Avian mercury exposure and toxicological risk across western North America: A synthesis. Sci. Total Environ. 568, 749–769 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., de Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Obrist, D. et al. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47, 116–140 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Saiki, M. K., Martin, B. A., May, T. W. & Alpers, C. N. Mercury concentrations in fish from a Sierra Nevada foothill reservoir located downstream from historic gold-mining operations. Environ. Monit. Assess. 163, 313–326 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    McLagan, D. S. et al. A high-precision passive air sampler for gaseous mercury. Environ. Sci. Technol. Lett. 3, 24–29 (2016).

    CAS 

    Google Scholar
     

  • 64.

    Stupple, G. W., McLagan, D. S. & Steffan, A. In situ reactive gaseous mercury uptake on radiello diffusive barrier, cation exchange membrane, and teflon filter membranes during atmospheric mercury depletion events. In 14th International Conference on Mercury as a Global Pollutant (2019).

  • 65.

    Schulenberg, T. S. et al. Birds of Peru (Princeton University Press, 2010).

  • 66.

    Almeida, D. R. A. et al. Monitoring the structure of forest restoration plantations with a drone-lidar system. Int. J. Appl. Earth Obs. Geoinf. 79, 192–198 (2019).

    ADS 

    Google Scholar
     

  • 67.

    Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J. & Xie, Z. Natural mercury isotope variation in coal deposits and organic soils. Environ. Sci. Technol. 42, 8303–8309 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    McLagan, D. S. et al. Global evaluation and calibration of a passive air sampler for gaseous mercury. Atmos. Chem. Phys. 18, 5905–5919 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Munson, K. M., Babi, D. & Lamborg, C. H. Determination of monomethylmercury from seawater with ascorbic acid-assisted direct ethylation. Limnol. Oceanogr. Methods 12, 1–9 (2014).


    Google Scholar
     

  • 70.

    Hintelmann, H. & Nguyen, H. T. Extraction of methylmercury from tissue and plant samples by acid leaching. Anal. Bioanal. Chem. 381, 360–365 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Tseng, C. M. et al. Rapid and quantitative microwaveassisted recovery of methylmercury from standard reference sediments. J. Anal. At. Spectrom. 12, 629–635 (1997).

    CAS 

    Google Scholar
     

  • 72.

    Rahman, M. & Kingston, H. Development of a microwave-assisted extraction method and isotopic validation of mercury species in soils and sediments. J. Anal. At. Spectrom. 20, 183–191 (2005).

    CAS 

    Google Scholar
     

  • 73.

    Hintelmann, H. & Evans, R. D. Application of stable isotopes in environmental tracer studies—measurement of monomethylmercury (CH3Hg+) by isotope dilution ICP-MS and detection of species transformation. Fresenius J. Anal. Chem. 358, 378–385 (1997).

    CAS 

    Google Scholar
     

  • 74.

    Fostier, A. H. et al. Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapa State, Brazil). Sci. Total Environ. 260, 201–211 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Batjes, N. H. & Dijkshoorn, J. A. Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma 89, 273–286 (1999).

    ADS 

    Google Scholar
     

  • 76.

    ‘R Core Team’. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  • 77.

    Obrist, D. et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Gerson, J. R. et al. Chemistry of surface water, precipitation, throughfall, leaves, sediment, soil, and air near artisanal gold mining in Madre de Dios, Peru. Ecology Data Papers (2022). In Press.