Mapping the energetic and allosteric landscapes of protein binding domains

  • Guarnera, E. & Berezovsky, I. N. Allosteric drugs and mutations: chances, challenges, and necessity. Curr. Opin. Struct. Biol. 62, 149–157 (2020).

    CAS 

    Google Scholar
     

  • Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, J. & Lai, L. Protein topology and allostery. Curr. Opin. Struct. Biol. 62, 158–165 (2020).

    CAS 

    Google Scholar
     

  • Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Nussinov, R. & Tsai, C.-J. Allostery in disease and in drug discovery. Cell 153, 293–305 (2013).

    CAS 

    Google Scholar
     

  • Monod, J., Changeux, J. P. & Jacob, F. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963).

    CAS 

    Google Scholar
     

  • Ullmann, A. In memoriam: Jacques Monod (1910–1976). Genome Biol. Evol. 3, 1025–1033 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–786 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dionne, U. et al. Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nat. Commun. 12, 1597 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCormick, J. W., Russo, M. A., Thompson, S., Blevins, A. & Reynolds, K. A. Structurally distributed surface sites tune allosteric regulation. eLife 10, e68346 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandaru, P. et al. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife 6, e27810 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds, K. A., McLaughlin, R. N. & Ranganathan, R. Hot spots for allosteric regulation on protein surfaces. Cell 147, 1564–1575 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakes, B. L. et al. Profiling of engineering hotspots identifies an allosteric CRISPR–Cas9 switch. Nat. Biotechnol. 34, 646–651 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leander, M., Yuan, Y., Meger, A., Cui, Q. & Raman, S. Functional plasticity and evolutionary adaptation of allosteric regulation. Proc. Natl Acad. Sci. USA 117, 25445–25454 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tack, D. S. et al. The genotype-phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10179 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyote-Maestas, W., He, Y., Myers, C. L. & Schmidt, D. Domain insertion permissibility-guided engineering of allostery in ion channels. Nat. Commun. 10, 290 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. & Lehner, B. Biophysical ambiguities prevent accurate genetic prediction. Nat. Commun. 11, 4923 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otwinowski, J. Biophysical inference of epistasis and the effects of mutations on protein stability and function. Mol. Biol. Evol. 35, 2345–2354 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodsmith, J. et al. Protein interaction perturbation profiling at amino-acid resolution. Nat. Methods 14, 1213–1221 (2017).

    CAS 

    Google Scholar
     

  • Cagiada, M. et al. Understanding the origins of loss of protein function by analyzing the effects of thousands of variants on activity and abundance. Mol. Biol. Evol. 38, 3235–3246 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domingo, J., Baeza-Centurion, P. & Lehner, B. The causes and consequences of genetic interactions (epistasis). Annu. Rev. Genom. Hum. Genet. 20, 433–460 (2019).

    CAS 

    Google Scholar
     

  • Diss, G. & Lehner, B. The genetic landscape of a physical interaction. eLife 7, e32472 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy, E. D., Kowarzyk, J. & Michnick, S. W. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation. Cell Rep. 7, 1333–1340 (2014).

    CAS 

    Google Scholar
     

  • Pelletier, J. N., Arndt, K. M., Plückthun, A. & Michnick, S. W. An in vivo library-versus-library selection of optimized protein-protein interactions. Nat. Biotechnol. 17, 683–690 (1999).

    CAS 

    Google Scholar
     

  • Campbell-Valois, F.-X., Tarassov, K. & Michnick, S. W. Massive sequence perturbation of a small protein. Proc. Natl Acad. Sci. USA. 102, 14988–14993 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    CAS 

    Google Scholar
     

  • Wei, X. et al. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genet. 10, e1004819 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horovitz, A., Fleisher, R. C. & Mondal, T. Double-mutant cycles: new directions and applications. Curr. Opin. Struct. Biol. 58, 10–17 (2019).

    CAS 

    Google Scholar
     

  • Calosci, N. et al. Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl Acad. Sci. USA 105, 19241–19246 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellogg, E. H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79, 830–838 (2011).

    CAS 

    Google Scholar
     

  • Nisthal, A., Wang, C. Y., Ary, M. L. & Mayo, S. L. Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. Proc. Natl Acad. Sci. USA 116, 16367–16377 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laursen, L., Kliche, J., Gianni, S. & Jemth, P. Supertertiary protein structure affects an allosteric network. Proc. Natl Acad. Sci. USA 117, 24294–24304 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoichet, B. K., Baase, W. A., Kuroki, R. & Matthews, B. W. A relationship between protein stability and protein function. Proc. Natl Acad. Sci. USA 92, 452–456 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redler, R. L., Das, J., Diaz, J. R. & Dokholyan, N. V. Protein destabilization as a common factor in diverse inherited disorders. J. Mol. Evol. 82, 11–16 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Mosca, R., Céol, A. & Aloy, P. Interactome3D: adding structural details to protein networks. Nat. Methods 10, 47–53 (2013).

    CAS 

    Google Scholar
     

  • McLaughlin, R. N. Jr et al. The spatial architecture of protein function and adaptation. Nature 491, 138–142 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Mapping allosteric communications within individual proteins. Nat. Commun. 11, 3862 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahni, N. et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647–660 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinney, J. B., Murugan, A., Callan, C. G. Jr & Cox, E. C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl Acad. Sci. USA 107, 9158–9163 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forcier, T. L. et al. Measuring cis-regulatory energetics in living cells using allelic manifolds. eLife 7, e40618 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tareen, A. et al. MAVE-NN: learning genotype–phenotype maps from multiplex assays of variant effect. Preprint at bioArxiv https://doi.org/10.1101/2020.07.14.201475 (2020).

  • Adams, R. M., Mora, T., Walczak, A. M. & Kinney, J. B. Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves. eLife 5, e23156 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinney, J. B. & McCandlish, D. M. Massively parallel assays and quantitative sequence–function relationships. Annu. Rev. Genomics Hum. Genet. 20, 99–127 (2019).

    CAS 

    Google Scholar
     

  • Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar