Community-driven tree planting greens the neighbouring landscape

  • 1.

    Le, Q. B., Nkonya, E. & Mirzabaev, A. Biomass productivity-based mapping of global land degradation hotspots. Econ. Land Degrad. Improve. Glob. Assess. Sustain. Dev. https://doi.org/10.1007/978-3-319-19168-3_4 (2016).

    Article 

    Google Scholar
     

  • 2.

    IPBES. The IPBES assessment report on land degradation and restoration. Secrateriat Intergov. Sci. Platf. Biodivers. Ecosyst. Serv. https://doi.org/10.5281/ZENODO.3237393 (2018).

  • 3.

    Webb, N. P. et al. Land degradation and climate change: Building climate resilience in agriculture. Front. Ecol. Environ. 15, 450–259 (2017).

    Article 

    Google Scholar
     

  • 4.

    Mbow, C., Smith, P., Skole, D., Duguma, L. & Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 6, 8–14 (2014).

    Article 

    Google Scholar
     

  • 5.

    Waswa, B. S. et al. Geoderma Evaluating indicators of land degradation in smallholder farming systems of western Kenya. Geoderma 195–196, 192–200 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Lasco, R. D., Delfino, R. J. P., Catacutan, D. C., Simelton, E. S. & Wilson, D. M. Climate risk adaptation by smallholder farmers : The roles of trees and agroforestry. Curr. Opin. Environ. Sustain. 6, 83–88 (2014).

    Article 

    Google Scholar
     

  • 7.

    Thorlakson, T., Neufeldt, H. Reducing subsistence farmers’ vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. Agric & Food Secur. 1, 15 (2012).

    Article 

    Google Scholar
     

  • 8.

    De Giusti, G., Kristjanson, P. & Rufino, M.C. Agroforestry as a climate change mitigation practice in smallholder farming: evidence from Kenya. Climatic Change 153, 379–394 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Meijer, S. S., Catacutan, D., Ajayi, O. C. & Sileshi, G. W. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub- Saharan Africa. Int. J. Agric. Sustain. 13, 40–54 (2015).

    Article 

    Google Scholar
     

  • 10.

    Henry, M. et al. Agriculture, ecosystems and environment biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric. Ecosyt. Environ. 129, 238–252 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Jindal, R., Swallow, B. & Kerr, J. Forestry-based carbon sequestration projects in Africa : Potential benefits and challenges. Nat. Resour. Forum 32, 116–130 (2008).

    Article 

    Google Scholar
     

  • 12.

    Estrada, M. & Corbera, E. The potential of carbon offsetting projects in the forestry sector for poverty reduction in developing countries. in Integrating Ecology and Poverty Reduction: The Application of Ecology in Development Solutions (eds. Ingram, J. C., DeClerck, F. & del Rio, C.) 137–147. https://doi.org/10.1007/978-1-4614-0186-5_11 (Springer, 2011).

  • 13.

    Willemen, L. et al. How to halt the global decline of lands. Nat. Sustain. 3, 164–166 (2020).

    Article 

    Google Scholar
     

  • 14.

    Reed, M. S. Participatory technology development for agroforestry extension: An innovation-decision approach. Afr. J. Agric. Res. 2, 334–341 (2007).


    Google Scholar
     

  • 15.

    Shames, S., Wollenberg, E., Buck, L. E., Kristjanson, P. & Masiga, M. Institutional Innovations in African Smallholder Carbon Projects. CCAFS Report No. 8 Copenhagen, Denmark: CCAFS (2012).

  • 16.

    TIST. TIST Program Summary: Kenya. http://www.tist.org/tist/docs/USAID-Documents/TIST{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Program{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Summary{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20KE{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20200101.pdf (2021).

  • 17.

    I4EI. USAID Kenya TIST Program Final Performance Report. http://www.tist.org/tist/docs/USAID-Documents/I4EI{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20USAID{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20KE{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20140616{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Final{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Report{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20140619.pdf (2014).

  • 18.

    Oppenheimer, S. Impact Evaluation of the TIST Program in Kenya. 1–38. http://www.tist.org/tist/docs/PDD-Documents/TIST{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20KE{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20PD-VCS-Ex23{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20GL2{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Community{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Survey{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Result.pdf (2011).

  • 19.

    CAAC. Monitoring Report For TIST Program in Kenya. VCS-009, Verification 03. http://www.tist.org/tist/docs/PDD-Documents/TIST{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20KE{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20PD-VCS-009n{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20App13{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Verif{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}2003{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Monitoring{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20Rpt{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}20200522-2.pdf (2020).

  • 20.

    Jose, S. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor. Syst. 76, 1–10 (2009).

    Article 

    Google Scholar
     

  • 21.

    Mafongoya, P. et al. Maize productivity and pro fi tability in Conservation Agriculture systems across agro-ecological regions in Zimbabwe : A review of knowledge and practice. Agric. Ecosyst. Environ. 220, 211–225 (2016).

    Article 

    Google Scholar
     

  • 22.

    Wang, J. et al. Relations between NDVI and tree productivity in the central Great Plains. Int. J. Remote Sens. 25, 3127–3138 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Gichenje, H. & Godinho, S. Establishing a land degradation neutrality national baseline through trend analysis of GIMMS NDVI time-series. Land Degrad. Dev. 29, 2985–2997 (2018).

    Article 

    Google Scholar
     

  • 24.

    Fensholt, R. & Proud, S. R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Borish, D., King, N. & Dewey, C. Enhanced community capital from primary school feeding and agroforestry program in Kenya. Int. J. Educ. Dev. 52, 10–18 (2017).

    Article 

    Google Scholar
     

  • 26.

    De Jong, B. H. J., Bazán, E. E. & Montalvo, S. Application of the “Climafor” baseline to determine leakage : The case of Scolel Te. Mitig. Adapt. Strateg. Glob. Chang. 12, 1153–1168 (2007).

    Article 

    Google Scholar
     

  • 27.

    Ilstedt, U. et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 6, 1–12 (2016).

    Article 

    Google Scholar
     

  • 28.

    Ndayambaje, J. D. & Mohren, G. M. J. Fuelwood demand and supply in Rwanda and the role of agroforestry. Agrofor. Syst. 83, 303–320 (2011).

    Article 

    Google Scholar
     

  • 29.

    Iiyama, M. et al. The potential of agroforestry in the provision of sustainable woodfuel in sub-Saharan Africa. Curr. Opin. Environ. Sustain. 6, 138–147 (2014).

    Article 

    Google Scholar
     

  • 30.

    TIST. The Tree: TIST Uganda December 2011 Newsletter. (2011). https://program.tist.org/uganda-newsletters. Accessed 5 Feb 2021.

  • 31.

    TIST. Mazingira Bora: TIST Kenya January 2012 Newsletter. (2012). https://program.tist.org/kenya-newsletters. Accessed 5 Feb 2021.

  • 32.

    Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 61, 404–412 (2016).

    Article 

    Google Scholar
     

  • 33.

    Holl, B. N. & Brancalion, P. H. Tree planting is not a simple solution. Science (80) 368, 580–582 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Lenton, T. M. Tipping positive change. Philos. Trans. R. Soc. B Biol. Sci. 375, 1–2 (2020).

    Article 

    Google Scholar
     

  • 35.

    Eckert, S., Kiteme, B., Njuguna, E. & Zaehringer, J. G. Agricultural expansion and intensification in the foothills of Mount Kenya : A landscape perspective. Remote Sens. 9, 784 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Schmocker, J., Liniger, H. P., Ngeru, J. N., Brugnara, Y. & Auchmann, R. Trends in mean and extreme precipitation in the Mount Kenya region from observations and reanalyses. Int. J. Climatol. 1514, 1500–1514 (2016).

    Article 

    Google Scholar
     

  • 37.

    FAO. Africover Multipurpose Land Cover Database for Kenya. (2000). https://datasets.wri.org/dataset/agricultural-areas-in-kenya. Accessed 4 June 2020.

  • 38.

    Williams, D. L., Goward, S. & Arvidson, T. Landsat: Yesterday, today, and tomorrow. Photogramm. Eng. Remote Sens. 72, 1171–1178 (2006).

    Article 

    Google Scholar
     

  • 39.

    Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Gorelick, N. et al. Remote sensing of environment google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    QGIS.org. QGIS Geographic Information System. QGIS Association. Version 3.8.2. http://www.qgis.org (2021).

  • 42.

    R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Version 3.6.3. https://www.R-project.org (2021).