Human fingerprint on structural density of forests globally

Human fingerprint on structural density of forests globally

  • Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article 

    Google Scholar
     

  • Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).

  • Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Grantham, H. S. et al. The emerging threat of extractives sector to intact forest landscapes. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2021.692338 (2021).

  • IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES, 2019).

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01026-5 (2021).

    Article 

    Google Scholar
     

  • Maxwell, S. L. et al. Degradation and forgone removals increase the carbon impact of intact forest loss by 626{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48}. Sci. Adv. 5, eaax2546 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article 

    Google Scholar
     

  • Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).

    Article 

    Google Scholar
     

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Nielsen, S. E., Mao, L., Chen, S. & Svenning, J. C. Regional and historical factors supplement current climate in shaping global forest canopy height. J. Ecol. 104, 469–478 (2016).

    Article 

    Google Scholar
     

  • Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Knight, C. A. et al. Land management explains major trends in forest structure and composition over the last millennium in California’s Klamath Mountains. Proc. Natl Acad. Sci. USA 119, e2116264119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl Acad. Sci. USA 110, 18454–18459 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Article 

    Google Scholar
     

  • Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).

    Article 

    Google Scholar
     

  • Sandel, B. & Svenning, J. C. Human impacts drive a global topographic signature in tree cover. Nat Commun. https://doi.org/10.1038/ncomms3474 (2013).

  • Potapov, P. et al. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 51 (2008).

    Article 

    Google Scholar
     

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Clerici, N. et al. Deforestation in Colombian protected areas increased during post-conflict periods. Sci. Rep. 10, 4971 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heino, M. et al. Forest loss in protected areas and intact forest landscapes: a global analysis. PLoS ONE 10, e0138918 (2015).

    Article 

    Google Scholar
     

  • Leberger, R., Rosa, I. M. D., Guerra, C. A., Wolf, F. & Pereira, H. M. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299 (2020).

    Article 

    Google Scholar
     

  • Wade, C. M. et al. What is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018. Forests 11, 539 (2020).

    Article 

    Google Scholar
     

  • Transforming Our World: The 2030 Agenda for Sustainable Development (UN DESA, 2016).

  • Burleson, E. Paris Agreement and consensus to address climate challenge. ASIL Insight 20, 8 (2016).


    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Quegan, S. et al. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ. 227, 44–60 (2019).

    Article 

    Google Scholar
     

  • Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001708 (2011).

  • Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).

    Article 

    Google Scholar
     

  • Atkins, J. W., Fahey, R. T., Hardiman, B. S. & Gough, C. M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123, 1387–1405 (2018).

    Article 

    Google Scholar
     

  • Scarth, P., Armston, J., Lucas, R. & Bunting, P. A structural classification of Australian vegetation using ICESat/GLAS, ALOS PALSAR, and Landsat sensor data. Remote Sens. 11, 147 (2019).

    Article 

    Google Scholar
     

  • Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Article 

    Google Scholar
     

  • Lang, N. et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 (2022).

    Article 

    Google Scholar
     

  • Marselis, S. M., Keil, P., Chase, J. M. & Dubayah, R. The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 17, 045003 (2022).

    Article 

    Google Scholar
     

  • MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Article 

    Google Scholar
     

  • Walter, J. A., Stovall, A. E. L. & Atkins, J. W. Vegetation structural complexity and biodiversity in the Great Smoky Mountains. Ecosphere 12, e03390 (2021).

    Article 

    Google Scholar
     

  • Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Article 

    Google Scholar
     

  • Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chazdon, R. L. et al. A policy‐driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).

    Article 

    Google Scholar
     

  • Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).

    Article 

    Google Scholar
     

  • Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).

    Article 

    Google Scholar
     

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40{6d6906d986cb38e604952ede6d65f3d49470e23f1a526661621333fa74363c48} of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ponta, N. et al. Drivers of transgression: what pushes people to enter protected areas. Biol. Conserv. 257, 109121 (2021).

    Article 

    Google Scholar
     

  • Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).

    Article 

    Google Scholar
     

  • Tollefson, J. Illegal mining in the Amazon hits record high amid Indigenous protests. Nature 598, 15–16 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thies, C., Rosoman, G., Cotter, J. & Meaden, S. Intact Forest Landscapes. Why It Is Crucial to Protect Them from Industrial Exploitation Technical Note Bd 5 (Greenpeace, 2011).

  • Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lindenmayer, D. B. et al. New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv. Lett. 7, 61–69 (2014).

    Article 

    Google Scholar
     

  • Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2018).

  • Tang, H. & Armston, J. Algorithm Theoretical Basis Document (ATBD) for GEDI L2B Footprint Canopy Cover and Vertical Profile Metrics (Goddard Space Flight Center, 2019).

  • Adam, M., Urbazaev, M., Dubois, C. & Schmullius, C. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters. Remote Sens. 12, 3948 (2020).

    Article 

    Google Scholar
     

  • Dorado-Roda, I. et al. Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sens. 13, 2279 (2021).

    Article 

    Google Scholar
     

  • Duncanson, L. et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 270, 112845 (2022).

    Article 

    Google Scholar
     

  • Hofton, M., Blair, J. B., Story, S. & Yi, D. Algorithm Theoretical Basis Document (ATBD) (NASA, 2020).

  • Dubayah, R. et al. GEDI L3 Gridded Land Surface Metrics v.2 (ORNL DAAC, 2021).

  • Roy, D. P., Kashongwe, H. B. & Armston, J. The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Sci. Remote Sens. 4, 100024 (2021).

    Article 

    Google Scholar
     

  • Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R. & Pittman, K. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 112, 3708–3719 (2008).

    Article 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 

    Google Scholar
     

  • Silva, C. A. et al. rGEDI: NASA’s global ecosystem ynamics investigation (GEDI) data visualization and processing. R package version 0.1.2. (2020).

  • The R Project for Statistical Computing (The R Foundation, 2014); https://www.R-project.org/

  • Fischer, B., Smith, M., Pau, G., Morgan, M. & van Twisk, D. rhdf5: R interface to HDF5. R package version 2.40.0 (2022).

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article 

    Google Scholar
     

  • Giglio, L., Loboda, T., Roy, D. P., Quayle, B. & Justice, C. O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 113, 408–420 (2009).

    Article 

    Google Scholar
     

  • Hengl, T. & Wheeler, I. Soil organic carbon content in x 5 g/kg at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/zenodo.1475458 (2018).

  • Farr, T. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).

  • James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Bivand, R. et al. Package ‘spdep’: spatial dependence: weighting schemes, statistics version 1.2-7 (The Comprehensive R Archive Network, 2015).

  • Bivand, R., Yu, D., Nakaya, T., Garcia-Lopez, M.-A. & Bivand, M. R. Package ‘spgwr’: geographically eighted regression. R package version 0.6-35 (2020).

  • Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003).