Cumulative effects of human footprint, natural features and predation risk best predict seasonal resource selection by white-tailed deer

Cumulative effects of human footprint, natural features and predation risk best predict seasonal resource selection by white-tailed deer

  • Eisner, R., Seabrook, L. M. & McAlpine, C. A. Are changes in global oil production influencing the rate of deforestation and biodiversity loss?. Biol. Conserv. 196, 147–155. https://doi.org/10.1016/j.biocon.2016.02.017 (2016).

    Article 

    Google Scholar
     

  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/132419 (2003).

    Article 

    Google Scholar
     

  • Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191. https://doi.org/10.1038/nature24457 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tilman, D., May, R., Lehman, C. & Nowak, M. Habitat destruction and the extinction debt. Nature 371, 65–66. https://doi.org/10.1038/371065a0 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Fisher, J. T. & Burton, C. A. Wildlife winners and losers in an oil sands landscape. Front Ecol. Environ. https://doi.org/10.1002/fee.1807 (2018).

    Article 

    Google Scholar
     

  • Heim, N., Fisher, J. T., Volpe, J., Clevenger, A. P. & Paczkowski, J. Carnivore community response to anthropogenic landscape change: species-specificity foils generalizations. Landscape Ecol. 34, 2493–2507. https://doi.org/10.1007/s10980-019-00882-z (2019).

    Article 

    Google Scholar
     

  • Pereira, H. M., Navarro, L. & Martins, I. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-042911-093511 (2012).

    Article 

    Google Scholar
     

  • Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer. Glob Change Biol. 21, 3961–3970. https://doi.org/10.1111/gcb.13037 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Holbrook, S. J. & Schmitt, R. J. The combined effects of predation risk and food reward on patch selection. Ecology 69, 125–134. https://doi.org/10.2307/1943167 (1988).

    Article 

    Google Scholar
     

  • Moody, A. L., Houston, A. I. & McNamara, J. M. Ideal free distributions under predation risk. Behav. Ecol. Sociobiol. 38, 131–143 (1996).

    Article 

    Google Scholar
     

  • Dietz, H. & Edwards, P. J. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87, 1359–1367 (2006).

    Article 

    Google Scholar
     

  • Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6, 324–337 (1992).

    Article 

    Google Scholar
     

  • Van der Graaf, S., Stahl, J., Klimkowska, A. & Drent, J. P. B. Surfing on a green wave—How plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea -Wageningen- 94, 567 (2006).


    Google Scholar
     

  • Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/A:1010034312781 (1999).

    Article 

    Google Scholar
     

  • Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).

    Article 

    Google Scholar
     

  • Shackelford, N. et al. Primed for change: developing ecological restoration for the 21st Century. Restor. Ecol. 21, 297–304. https://doi.org/10.1111/rec.12012 (2013).

    Article 

    Google Scholar
     

  • Pickell, P. D., Pickell, P. D., Andison, D. W., Coops, N. C. & Gergel, S. E. The spatial patterns of anthropogenic disturbance in the western Canadian boreal forest following oil and gas development. Can. J. For. Res. 45, 732–743. https://doi.org/10.1139/cjfr-2014-0546 (2015).

    Article 

    Google Scholar
     

  • Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal Rev. 35, 51–81 (2005).

    Article 

    Google Scholar
     

  • Wittische, J., Heckbert, S., James, P. M. A., Burton, A. C. & Fisher, J. T. Community-level modelling of boreal forest mammal distribution in an oil sands landscape. Sci. Total Environ. 755, 142500. https://doi.org/10.1016/j.scitotenv.2020.142500 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hewitt, D. G. Biology and management of white-tailed deer (CRC Press, Boca Raton, 2011).

    Book 

    Google Scholar
     

  • McCabe, R. E. & McCabe, T. R. in White tailed deer: ecology and management Ch. Chapter 2, 19–72 (Stackpole, A Wildlife Management Institute Book, 1984).

  • Webb, R. The range of white-tailed deer in Alberta (Alberta Fish and Wildlife Division Edmonton, Alberta, 1967).


    Google Scholar
     

  • Dawe, K. L. & Boutin, S. Climate change is the primary driver of white-tailed deer (Odocoileus virginianus) range expansion at the northern extent of its range; land use is secondary. Ecol. Evol. 6, 6435–6451. https://doi.org/10.1002/ece3.2316 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeCesare, N. J., Hebblewhite, M., Robinson, H. S. & Musiani, M. Endangered, apparently: the role of apparent competition in endangered species conservation. Anim. Conserv. 13, 353–362. https://doi.org/10.1111/j.1469-1795.2009.00328.x (2010).

    Article 

    Google Scholar
     

  • Latham, A. D. M., Latham, M. C., McCutchen, N. A. & Boutin, S. Invading white-tailed deer change wolf-caribou dynamics in northeastern Alberta. J. Wildl. Manag. 75, 204–212. https://doi.org/10.1002/jwmg.28 (2011).

    Article 

    Google Scholar
     

  • Latham, A. D. M., Latham, M. C., Boyce, M. C. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 11 (2011).

    Article 

    Google Scholar
     

  • Fisher, J. T., Burton, A. C., Nolan, L. & Roy, L. Influences of landscape change and winter severity on invasive ungulate persistence in the Nearctic boreal forest. Sci. Rep. 10, 8742. https://doi.org/10.1038/s41598-020-65385-3 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabros, A., Pyper, M. & Castilla, G. Seismic lines in the boreal and arctic ecosystems of North America: environmental impacts, challenges, and opportunities. Environ. Rev. 26, 214–229. https://doi.org/10.1139/er-2017-0080 (2018).

    Article 

    Google Scholar
     

  • Dickie, M., Serrouya, R., McNay, R. S., Boutin, S. & du Toit, J. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263. https://doi.org/10.1111/1365-2664.12732 (2017).

    Article 

    Google Scholar
     

  • Finnegan, L., MacNearney, D. & Pigeon, K. E. Divergent patterns of understory forage growth after seismic line exploration: implications for caribou habitat restoration. For. Ecol. Manag. 409, 634–652. https://doi.org/10.1016/j.foreco.2017.12.010 (2018).

    Article 

    Google Scholar
     

  • Prokopenko, C. M., Boyce, M. S., Avgar, T. & Tulloch, A. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).

    Article 

    Google Scholar
     

  • Waring, G. H., Griffis, J. L. & Vaughn, M. E. White-tailed deer roadside behavior, wildlife warning reflectors, and highway mortality. Appl. Anim. Behav. Sci. 29, 215–223. https://doi.org/10.1016/0168-1591(91)90249-W (1991).

    Article 

    Google Scholar
     

  • Bowman, J., Ray, J. C., Magoun, A. J., Johnson, D. S. & Dawson, F. N. Roads, logging, and the large-mammal community of an eastern Canadian boreal forest. Can. J. Zool. 88, 454–467. https://doi.org/10.1139/z10-019 (2010).

    Article 

    Google Scholar
     

  • Munro, K. G., Bowman, J. & Fahrig, L. Effect of paved road density on abundance of white-tailed deer. Wildl. Res. 39, 478. https://doi.org/10.1071/wr11152 (2012).

    Article 

    Google Scholar
     

  • Fisher, J. T. & Burton, A. C. Spatial structure of reproductive success infers mechanisms of ungulate invasion in Nearctic boreal landscapes. Ecol. Evol. 11, 900–911. https://doi.org/10.1002/ece3.7103 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kie, J. G. Optimal foraging and risk of predation effects on behavior and social structure in ungulates. J. Mammal. 80, 1114–1129 (1999).

    Article 

    Google Scholar
     

  • Brown, J. S., Laundré, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399. https://doi.org/10.2307/1383287 (1999).

    Article 

    Google Scholar
     

  • Kittle, A. M., Fryxell, J. M., Desy, G. E. & Hamr, J. The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates. Oecologia 157, 163–175. https://doi.org/10.1007/s00442-008-1051-9 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moen, A. N. Energy conservation by white-tailed deer in the winter. Ecology 57, 192–198. https://doi.org/10.2307/1936411 (1976).

    Article 

    Google Scholar
     

  • Schmidt, K. Winter ecology of nonmigratory Alpine red deer. Oecologia 95, 226–233. https://doi.org/10.1007/BF00323494 (1993).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. https://doi.org/10.1002/jwmg.393 (2012).

    Article 

    Google Scholar
     

  • Laurent, M., Dickie, M., Becker, M., Serrouya, R. & Boutin, S. Evaluating the mechanisms of landscape change on white-tailed deer populations. J. Wildl. Manag. 85, 340–353. https://doi.org/10.1002/jwmg.21979 (2020).

    Article 

    Google Scholar
     

  • Schneider, R. R., Hauer, G., Adamowicz, W. L. & Boutin, S. Triage for conserving populations of threatened species: the case of woodland caribou in Alberta. Biol. Conserv. 143, 1603–1611. https://doi.org/10.1016/j.biocon.2010.04.002 (2010).

    Article 

    Google Scholar
     

  • Kilkenny, C., Browne Wj Fau – Cuthill, I. C., Cuthill Ic Fau – Emerson, M., Emerson M Fau – Altman, D. G. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS biol. 8(6), e1000412 (2010).

  • DelGiudice, G. D., Mangipane, B. A., Sampson, B. A. & Kochanny, C. O. Chemical immobilization, body temperature, and post-release mortality of white-tailed deer captured by clover trap and net-gun. Wildl. Soc. Bull. (1973-2006) 29, 1147–1157 (2001).


    Google Scholar
     

  • Droge, E., Creel, S., Becker, M. S. & M’Soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128. https://doi.org/10.1038/s41559-017-0220-9 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kunkel, K. E. & Mech, L. D. Wolf and bear predation on white-tailed deer fawns in northeastern Minnesota. Can. J. Zool. 72, 1557–1565 (1994).

    Article 

    Google Scholar
     

  • Latham, A., Latham, M., Knopff, K., Hebblewhite, M. & Boutin, S. Wolves, white-tailed deer, and beaver: Implications of seasonal prey switching for woodland caribou declines. Ecography https://doi.org/10.1111/j.1600-0587.2013.00035.x (2013).

    Article 

    Google Scholar
     

  • Alberta Environment and Sustainable Resource Development. Alberta Vegetation Index. Accessed October 2016. https://geodiscover.alberta.ca/

  • Manly, B., McDonald, L., Thomas, D., McDonald, T. & Erickson, W.Resource selection by animals: statistical design and analysis for field studies. Vol. 63, pp. 1-10 (Springer Science & Business Media, 2007).

  • Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).

    Article 

    Google Scholar
     

  • Hijmans, R. & van Etten, J. Raster: Geographic data analysis and modeling. CRAN R package 2 (2016).

  • R: A language and environment for statistical computing. (Vienna, Austria, 2013).

  • Zuur, A., Hilbe, J. & Ieno, E. A Beginner’s Guide to GLM and GLMM with R: a frequentist and Bayesian perspective for ecologists. (Highland Statistics, 2013).

  • Gillies, C. S. et al. Application of random effects to the study of resource selection by animals. J. Anim. Ecol. 75, 887–898. https://doi.org/10.1111/j.1365-2656.2006.01106.x (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Craney, T. A. & Surles, J. G. Model-dependent variance inflation factor cutoff values. Qual. Eng. 14, 391–403. https://doi.org/10.1081/QEN-120001878 (2002).

    Article 

    Google Scholar
     

  • Akaike, H. Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike 199–213 (Springer, New York, 1998).

    Book 

    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).

    Article 
    MathSciNet 

    Google Scholar
     

  • Boulanger, Y. et al. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Landscape Ecol. 32, 1415–1431. https://doi.org/10.1007/s10980-016-0421-7 (2017).

    Article 

    Google Scholar
     

  • Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007. https://doi.org/10.1088/1748-9326/aa9b88 (2018).

    Article 
    ADS 

    Google Scholar
     

  • St-Pierre, F., Drapeau, P. & St-Laurent, M.-H. Drivers of vegetation regrowth on logging roads in the boreal forest: Implications for restoration of woodland caribou habitat. For. Ecol. Manag. 482, 118846. https://doi.org/10.1016/j.foreco.2020.118846 (2021).

    Article 

    Google Scholar
     

  • Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Let. 3, 620–623. https://doi.org/10.1098/rsbl.2007.0415 (2007).

    Article 

    Google Scholar
     

  • Heyes, A., Leach, A. & Mason, C. F. The economics of Canadian oil sands. Rev. Environ. Econ. Policy 12, 242–263. https://doi.org/10.1093/reep/rey006 (2018).

    Article 

    Google Scholar
     

  • Komers, P. E. & Stanojevic, Z. Rates of disturbance vary by data resolution: implications for conservation schedules using the Alberta boreal forest as a case study. Global Change Biol. 19, 2916–2928 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mech, D. L. & Boitani, L. Wolves: behavior, ecology, and conservation Vol. 57 (University of Chicago Press, Chicago, 2004).


    Google Scholar
     

  • Creel, S., Winnie, J. A., Christianson, D. & Liley, S. Time and space in general models of antipredator response: tests with wolves and elk. Anim. Behav. 76, 1139–1146. https://doi.org/10.1016/j.anbehav.2008.07.006 (2008).

    Article 

    Google Scholar
     

  • Steenweg, R. et al. Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34. https://doi.org/10.1002/fee.1448 (2017).

    Article 

    Google Scholar
     

  • Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Cons. 206, 102–111. https://doi.org/10.1016/j.biocon.2016.12.014 (2017).

    Article 

    Google Scholar
     

  • Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147 (2004).

    Article 

    Google Scholar
     

  • McCullough, D. R. Evaluation of night spotlighting as a deer study technique. J. Wildl. Manag. 46, 963–973. https://doi.org/10.2307/3808229 (1982).

    Article 

    Google Scholar
     

  • Preston, T., Wildhaber, M., Green, N., Albers, J. & Debenedetto, G. Enumerating white-tailed deer using unmanned aerial vehicles. Wildlife Soc. Bull. https://doi.org/10.1002/wsb.1149 (2021).

    Article 

    Google Scholar
     

  • Parks, A. E. Provincial woodland caribou range plan. 212 (Edmonton, Alberta, 2017).

  • Tattersall, E. R., Burgar, J. M., Fisher, J. T. & Burton, A. C. Boreal predator co-occurrences reveal shared use of seismic lines in a working landscape. Ecol. Evol. 10, 1678–1691. https://doi.org/10.1002/ece3.6028 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (New York N.Y.) https://doi.org/10.1126/science.aax3100 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Bayoumi, T. & Muhleisen, M. Energy, the exchange rate, and the economy: macroeconomic benefits of Canada’s oil sands production (International Monetary Fund, Washington, 2006).


    Google Scholar
     

  • Zhu, K., Song, Y. & Qin, C. Forest age improves understanding of the global carbon sink. Proc. Natl. Acad. Sci. 116, 3962. https://doi.org/10.1073/pnas.1900797116 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar